論 文

スクライブによる硬脆材料の亀裂伸展挙動

留井直子*,村上健二*,橋本多市*,福西利夫*

Crack propagation behavior of hard-brittle materials by wheel scribing

Naoko TOMEI, Kenji MURAKAMI, Taichi HASHIMOTO and Toshio FUKUNISHI

板ガラスの切断に用いられてきた「スクライブ+ブレイク」技術を電子部品用材料の切断に応用することで、高効率な切断が実現でき、すでに実用化されつつある.しかし、スクライブ現象については未だ解明されていないところが多い.本研究では、電子部品材料として使用されるアルミナ、単結晶 Si,単結晶 SiC におけるスクライブ時の亀裂伸展挙動について調査し、ガラスとの比較を行った.その結果、アルミナと単結晶 Si では、ガラスと同様に、負荷時に伸展する亀裂(1st Crack)と除荷後に伸展する亀裂(2nd Crack)の痕跡が確認されたが、単結晶 SiC では 1st Crack の痕跡のみであった.

Key words : scribing and breaking, wheel scribing, crack propagation, hard-brittle materials

1. 緒 言

スクライビングホイールと呼ばれる回転工具を用いた「スク ライブ+ブレイク」技術は、液晶用パネルをはじめとした板ガラ スの切断に広く使用されており、すでに生産ラインにおいて 技術が確立している^{1)~4)}.図1に「スクライブ+ブレイク」技術 の概略図を示す.スクライブ工程(図1(a))では、スクライビン グホイールにより、ガラス表面にスクライブラインと呼ばれる塑 性変形を形成する.その際、塑性変形域の下には引張応力 が発生し、この応力によって板厚方向に垂直なクラックが生じ る⁵⁾.次のブレイク工程(図1((b))では、曲げ応力を加えるこ とにより、スクライブ工程で形成された垂直クラックを伸展させ てガラスを分離する.

図1「スクライブ+ブレイク」技術の概略図

この切断技術の利点は、ダイシング加工で発生するカーフ ロスが発生しないこと、乾式で高速切断が可能であることであ る.また、レーザ加工のような熱影響が基板に残らないことも、 利点の1つである.

このような利点を有する「スクライブ+ブレイク」技術は、基板

〈採録決定日:2018年6月28日〉

が薄く、チップサイズが極めて小さい電子部品用材料の切断 に対しても有効であると考えられる.そこで、ガラスよりも硬い 電子部品用基板を切断するために、セラミックス専用のスクラ イビングホイール「Tougheel®(タフィール)」を開発し、アルミナ をはじめとした基板材料の切断について報告してきた⁶.

しかしながら, 基板に適したスクライブ条件を選ぶことは非 常に重要であるにもかかわらず, スクライブ時の亀裂伸展挙 動についての研究はわずかである.本報では, 電子部品とし て使用されている材料のなかから, ガラスと違い, 粒界が存在 する材料の代表としてアルミナ, また異方性を有する材料の 代表として単結晶 Siを選択し, ガラススクライブ時の亀裂伸展 挙動と比較を行った.また, 異方性だけでなく, オフ角を有す る単結晶 SiC についても, 切断面の観察によりスクライブ時の 挙動を考察したので, その結果について報告する.

2. 実験方法

2.1 ガラスにおける亀裂伸展挙動

ガラススクライブ時の亀裂伸展挙動を明らかにするため,高 速度カメラを用いてスクライブの様子を観察した.スクライブ実 験に使用したスクライビングホイールの概略図を図2に示す. ホイールは,外径2.0mm,厚さ0.65mm,穴径0.8mm,先端

図2 スクライビングホイールの概略図

 ^{*} 三星ダイヤモンド工業株式会社:〒566-0034 大阪府摂津市香露 園 32-12
MITSUBOSHI DIAMOND INDUSTRIAL CO., LTD. (学会受付日:2018 年 3月 26 日)

角度 130°, 超硬合金製を使用した.以下の実験では, 先端 角度以外は同じ形状である.

このホイールを用いて, 速度 10 mm/s, 荷重 24.6 N でスクラ イブ実験を行った. 板厚 0.7 mm の無アルカリガラス(Eagle XG, Corning)を使用し, 高速度カメラにより定点観察を行っ た. 観察方法を図 3 に示す. 高速度カメラの設定は, 500fps (frames per second)とした.

図3 ガラスの亀裂伸展観察方法の概略図

2.2 アルミナにおける亀裂伸展挙動

アルミナ基板での亀裂伸展挙動を観察するため,板厚 0.635 mm の96%アルミナ基板(A476T,京セラ)でスクライブ 実験を行った.スクライビングホイールは,先端角度 140 °の セラミックス専用ホイールを使用し,速度 100 mm/s,荷重 22.5 N でスクライブした後,ハンドブレイク(手で分離)を行った.そ の後,光学顕微鏡(KH7700, Hirox)とレーザ顕微鏡 (VK9700, KEYENCE)を用いて,切断面を観察した.以降の 切断面の観察は同様である.

2.3 単結晶 Si における亀裂伸展挙動

単結晶材料での亀裂伸展挙動を観察するため、板厚 0.42 mm の単結晶 Si について、(100)、(110)、(111)面でスクラ イブ実験を行った.スクライビングホイールは、先端角度 145 ° の超硬合金製を使用した.速度 100 mm/s、(100)と(111)面 は荷重 2.7 N、(110)面は荷重 2.2 Nとし、(110)面と平行にス クライブした後、メカブレイクを行った.

2.4 単結晶 SiC における亀裂伸展挙動

さらに、単結晶材料での亀裂伸展挙動を観察するため、板 厚 0.36 mm、オフ角 4°の単結晶 4H-SiC(新日鉄住金マテリ アルズ)について、(0001) 面の Si 面でスクライブ実験を行っ た.スクライビングホイールは、先端角度 150 °のセラミックス 専用ホイールを使用した.速度 100 mm/s、(1100) 面に平行 にスクライブする際は荷重 7.2 N、垂直にスクライブする際は 荷重 5.5 N とし、スクライブ後、メカブレイクを行った.

スクライビングホイールの先端角度とスクライブ荷重につい ては、板厚方向に垂直なクラックが可能な限り深く伸展し、か つ水平方向のクラックが伸展しない条件を選択した.また、ア ルミナ、単結晶 SiC は硬く超硬合金製ホイールではすぐに摩 耗してしまうため、工具摩耗が抑制できるセラミックス専用ホイ ールを使用した.

3. スクライブ時の亀裂伸展挙動

3.1 ガラスにおける亀裂伸展

高速度カメラを用いて、ガラスをスクライブした際の亀裂伸展 を撮影した.各時間での画像を図4に示す.図中,亀裂先端 を破線で示した.黒い円状に見える部分がホイールである. 図中,左から右方向へスクライブした.

まず, スクライビングホイール負荷時に亀裂が伸展した(図 4(a)). この時の亀裂を「1st Crack」とする. 1st Crack は板厚方 向の伸展が一旦停止し, 0.08 s後も停止したままであった(図 4(b)). その後, 再び亀裂伸展が開始し(図 4(c)), 1.0 s 後に は板厚の 50%以上の深い亀裂伸展が確認された(図 4(d)).

この時,スクライビングホイール通過後に伸展した亀裂を 「 2^{nd} Crack」とする.このときのガラスの切断面を図5(a)に示す. 1^{st} Crack 2^{nd} Crack の位置を矢印で示す.

(b) 0.08 s

(c) 0.2 s

(d) 1.0 s図 4 ガラススクライブ時の亀裂伸展挙動(24.6 N)

高速度カメラの動画から求めた亀裂深さと時間の関係(図 6(a)),板厚方向の亀裂伸展速度と時間の関係(図 6(b))をそ れぞれ示す.図 6(a)の結果から,亀裂の深さは時間とともに 飽和していることがわかる.また,図 6(b)の結果から,1st Crack の伸展速度は 10^2 mm s⁻¹であるのに対し, 2nd Crack の伸展速 度は $1\sim10^2$ mm s⁻¹であった.しかしながら,1st Crack は, 1frame で伸展しているため,伸展速度はそれ以上であると考 えられる.つまり,ホイール負荷時に伸展する 1st Crack の亀 裂伸展速度に比べて,ホイール通過後に伸展する 2nd Crack の亀裂伸展速度は 2 桁以上遅いことがわかった.

1st Crack はホイール負荷時の引張応力が駆動力となって 伸展する⁵⁾のに対し, 2nd Crack はホイール通過後の残留応力

により伸展する.この違いが伸展速度に関係していると考えられるが、メカニズムの解明には至っておらず今後の課題としたい.

3.2 アルミナにおける亀裂伸展

次にアルミナにおける亀裂伸展挙動を考察するために,ガ ラスとアルミナの切断面の比較を行った. 各切断面を図 5 に 示す. ガラスと同様に,アルミナにおいても 1st Crack と 2nd Crack と考えられる 2 本の亀裂の停止線(図中,赤矢印)が確 認された. そこで, 1st Crack と 2nd Crack 部分の切断面比較を 検討した.

通常,表面や切断面の状態を比較する場合,線粗さや面 粗さを用いることが多い.しかしアルミナの切断面では,うねり や気孔の影響から,線粗さや面粗さでは違いを明確にするこ とが困難であった.しかしながら,図 5(b)の光学顕微鏡の結 果から,光学的に違いがあることは確かであったため,光量ヒ ストグラムによる比較を行った.まず,予備実験として,研磨加 工前後の焼結 cBN(粒径:10 um)を用いて光量ヒストグラムを 比較した結果を図7に示す.図7(a)に研磨前の cBN の光量 測定領域,(b)に#2000 で研磨したものを示す.光量ヒストグ ラムの結果(図7(c))から,研磨前はブロードであったとストグ ラムが,研磨後はシャープになっていることが確認された.こ れは,研磨により,粒子の面がそろったために同じ光量の pixel 数が増え,光量ヒストグラムがシャープになったものと考 えられる.

同じ方法で,アルミナ切断面における 1st Crack 部と 2nd Crack 部の測定を行った. 結果を図8に示す. 図8(a)にアルミ ナの切断面, (a)の画像中, 破線の四角で囲んだ 1st Crack と 2nd Crack 部分の拡大画像を(b)に示す. 1st Crack と 2nd Crack での切断面の違いを明らかにするため, それぞれの領域に おける光量ヒストグラムを比較した.

(a) 研磨前の測定領域

(b) 研磨後の測定領域

図8 アルミナの切断面と光量ヒストグラム(ホイール角度:140°,スクライブ荷重:22.5 N)

1st Crack の光量測定領域を(c), 2nd Crack の領域を(d)に, それぞれ灰色の四角で示す.光量ヒストグラムの結果(e)から, 1st Crack ではシャープなピークが見られるのに対し, 2nd Crack では, ブロードであった. つまり, 1st Crack の面では粒 子の面がそろっているため,光の反射と散乱が起きているの に対し, 2nd Crack の面では粒子の面がそろっていないため, 散乱が多いと考えられる.

さらに、工具の形状による違いを確認するため、120°の工 具を用いてスクライブを行い、1st Crack と2nd Crack の光量ヒス

(ホイール角度:120°, スクライブ荷重:14.3 N)

トグラムを比較した. 結果を図9 に示す. 140° と同様に, 2nd Crack の領域に比べて, 1st Crack の領域は光量ヒストグラムが シャープであった. このことから, 亀裂伸展に関しては工具の 角度が違っても同じ現象が起きていると考えられる.

これらの結果から、アルミナスクライブ時の亀裂伸展挙動に ついて考察したモデルを図10に示す.均質で粒界のないガ ラス(図10(a))とは異なり、アルミナは粒子で構成されているた め亀裂伸展の経路が異なると考えられる.アルミナでは、スク ライビングホイールが基板に押込まれ、塑性変形域が形成さ せる.その下から1st Crack が伸展するが、亀裂伸展速度が速 いため、亀裂は粒内を進む.そのため、切断後の1st Crack 部 分は粒子の面がそろった状態であったと考えられる.

一方, 2nd Crack では亀裂伸展速度が遅いため, 破壊に必要なエネルギーが低いと考えられる粒界を亀裂が伸展する. その結果, 切断後の 2nd Crack 部分は粒子の面がそろっていない状態になったものと考えられる.

図 10 ガラスとアルミナの亀裂伸展挙動のモデル図

図 11 単結晶 Si の各結晶面における切断面

3.3 単結晶 Si の 亀裂伸展

異方性を有する単結晶材料をスクライブした際の亀裂伸展 挙動を確認するため、単結晶 Si の(100),(110),(111)面, それぞれの面を(110)面に平行にスクライブし切断した.切断 面の画像を図 11 に示す.単結晶ウエハに対する結晶面の状 態を,各面の上部に記載している.上部左がウエハ表面から 見た図,上部右がウエハを右側面から見た板厚方向の図で ある.図中,それぞれの結晶面が存在する方向を矢印で示し ている.

切断面の写真から、どの面においても、基板表面に対し垂 直な面で切断されていることが確認された.(100)面(図 11(a)) と(111)面(図 11(c))では、ガラスやアルミナと比較的類似した 切断面になっており、1st Crack と予想される痕跡がみられた. 一方、(110)面(図 11(b))は、切断面全体に板厚の垂直方向 に筋がみられ、1st Crack のような停止線らしきものは確認でき なかった.

ここで Si 単結晶の各面における表面自由エネルギーは, {111}:0.123 mJ/cm², {110}:0.151 mJ/cm², {100}:0.213 mJ/cm² である ⁷⁾. (110) 面より表面自由エネルギーの低い (111) 面が切断面に対し斜めに存在する(100) 面(図 11(a)) は, 亀裂が垂直に伸展しにくいと予想される.

ー方,(110)面(図11(b))では斜めの位置に存在する面が, 表面自由エネルギーがより高い(100)面である.また,(111) 面(図11(c))では斜めの位置に低エネルギーの面が存在しな いため垂直に亀裂伸展しやすいと考えられる.

そこで, 垂直に亀裂伸展しにくいと予想される(100)面の切 断面について, さらに詳細な調査を行った. 切断面のプロフ ァイルを図 12 に示す. 切断面にはガラスやアルミナで見られ た1st Crack と考えられる層が確認された. プロファイルの結果 から, その層は表面に対しほぼ垂直であった. さらにその下 には,約 34°の面が存在しており, この面は(111)面であると 考えられる.

つまり, ガラスやセラミックスと同様に, 亀裂伸展速度の速い 1st Crack は, エネルギー的に優位ではない(110)面で伸展す ることが可能であるが, 2nd Crack は伸展速度が遅いためエネ ルギー的に優位な(111)面で伸展すると考察される. このこと から, 単結晶基板のスクライブでは, 必ずしも亀裂を伸展させ ることが望ましいわけではなく, 1st Crack のみを形成した方が, より平滑で垂直な切断面が得られやすいと考えられる. その ためには, スクライブ荷重の細かな制御が重要であると予想さ れる.

3.4 単結晶 SiC の亀裂伸展

立方晶である単結晶 Si との違いを確認するため、単結晶 4H-SiC の(0001)面を(1100)面に平行、垂直それぞれスクラ イブし切断した.単結晶 4H-SiC はオフ角を有するため、結晶 面とスクライブの位置関係を図13に示す.(0001)面が第2オ リフラと逆の方向に4°傾いた状態で、(1100)面に平行にスク ライブしたラインを「Line A」、(1100)面に垂直、すなわち (1120)面に平行にスクライブしたラインを「Line B」とした.

図 13 単結晶 4H-Si の結晶面とスクラインラインの 位置関係

Line AとLine Bの切断面を図14に示す.ここで,図14(a) のLine A((1100)面)の両端は,Line B((1120)面)に相当し, 図14(b)のLine Bの両端はLine Aに相当する.第1オリフラ に平行なLine A((1100)面)で切断した面は,基板表面に対 し垂直に切断されていることが確認された.一方,第2オリフ ラに平行なLine B((1120)面)で切断した面は,オフ角の影 響を受けて,第2オリフラと逆方向に4°傾いていた.

オフ角の影響を受けた Line B について, さらに詳細に調べ た. 切断面の基板表面付近について形状プロファイルを図 15 に示す. 基板表面から約10 µmの位置に亀裂の停止線と 思われる線が確認された. 3.3 項までのガラス, アルミナ, 単 結晶 Si(100) 面とは異なり, 停止線が 1 つであることから, 単 結晶 4H-SiC(0001)面では, 1st Crack だけが伸展し, 2nd Crack は伸展していないと考えられる. また, 1st Crack と考えら れる領域が 2.0~3.8° 傾いていることから、(1120)面に沿って 伸展していると考えられ、この点においてもSiの結果とは異な る.1st Crack が傾く原因として,以下の2つが考えられる.1つ は,表面が(0001)面ではなく4°ずれているために,刃先押 込み時の押込み量や塑性変形が左右非対称になっている可 能性である. もう1 つは, Si と比べ亀裂伸展に優位な面の角 度が小さいことである.しかしながら、オフ角を有する基板の 亀裂伸展に関してはオフ角の大きさの影響をはじめ不明点が 多く,これらの解明を今後の課題としたい.

4.結言

本研究では種々の材料についてスクライブした際の亀裂伸 展挙動を観察し考察した. ガラススクライブの結果,ホイール

図 15 単結晶 4H-SiC(0001)面における (1120)面の形状プロファイル

負荷時に伸展する 1st Crack の亀裂伸展速度に比べて, ホイ ール除荷後に伸展する 2nd Crack の亀裂伸展速度は 2 桁以 上遅いことがわかった.

焼結体であるアルミナでは、上記の伸展速度の違いにより、 1st Crack では粒内を亀裂伸展し、2nd Crack は粒界を亀裂伸 展していると考えられる.単結晶 Siも同様の傾向が見られ、そ の伸展速度の違いから、2nd Crack はエネルギーの低い結晶 面で伸展すると考えられる.一方、オフ角を有する単結晶 SiC では、オフ角に平行な(1100)面では垂直に亀裂伸展するが、 オフ角に直交する(1120)面では、1st Crack がオフ角の影響を 受け約 4° 傾いて伸展することが確認された.

5. 参考文献

- Y. MIYAKE : Separation technology for FPD glass, J. Jpn. Soc. Abras. Technol., 45, 7 (2001) 342 (in Japanese).
- N. TOMEI : Cutting Technology of Glass Sheet by Scribing and Breaking, NEW GLASS, 30, 112 (2014) 37 (in Japanese).
- Chwan-Huei Tsai and Bo-Wen Huang : Diamond scribing and laser breaking for LCD glass substrates, J. Mater. Processing Technol., 198 (2008) 350.
- 4) N. TOMEI, K MAEKAWA, H. WAKAYAMA and H. TOMIMORI : A study on scribing with a breakless wheel 1st Report ; Observation of crack propagation using a high-speed camera, J. Jpn. Soc. Abras. Technol., 53, 11 (2009) 684 (in Japanese).
- N. TOMEI, K. MURAKAMI, T. FUKUNISHI, S. YOSHIDA and J. MATSUOKA : Direct observation of crack propagation in a liquid crystal display glass substrate during wheel scribing, J. Appl. Glass Sci., 00 (2017) 1.
- 6) N. TOMEI, K. MURAKAMI, T. HASHIMOTO, M. KITAICHI, S. HIRANO and T. FUKUNISHSI : Development of a Scribing Wheel for Cutting Ceramic Substrates and its Wheel Scribing and Breaking Technology, J. Jpn. Soc. Abras. Technol., 59, 12 (2015) 705 (in Japanese).
- D. T. J. Hurle : A mechanism for twin formation during Czochralski and encapsulated vertical bridgman growh of III-V compand semiconductors, J. Cry. Growth., 147(1995) 239.